最近中文字幕在线mv视频在线,中文字幕无码家庭乱欲,一区二区伊人久久大杳蕉 ,亚洲综合国产一区,夜夜爽www

產品簡介
電池原位紅外附件
產品價格:¥0.01元/個
上架日期:2024-02-23
發(fā)貨地:上海 浦東新區(qū)
供應數量:不限
最少起訂:1個
瀏覽量:151
詳細說明
    詳細參數
    品牌上海零露儀器型號IR
    加工定制材質PEEK
    產地其他

    電池原位紅外附件

    產品詳情


    ?

    電化學原位紅外光譜分析是紅外分析技術的一個重要分支,能夠定性分析電催化(如CO2電還原等)反應、各種類型電池(如鋰離子、鋰硫電池等)充放電過程中電極表面的產物或中間產物隨時間(電位)不斷變化的趨勢,是研究電化學反應機理以及電化學反應動力學的重要手段之一。

    構造原理

    (1)兩電極體系,專為電池體系設計。

    (2)電化學反應池氣密性良好,可通入反應氣體。

    (3)金剛石晶體,適用性廣。

    ?

    2:基本原理示意圖

    ?

    附件組成

    (1)紅外光譜儀主機適配底板,適配主流紅外光譜儀。

    (2)光路系統(tǒng)。

    (3)PEEK材質氣密性電化學池。

    (4)O型圈密封件。

    ?

    主要特點

    (1)優(yōu)化的光路系統(tǒng),光通量大。

    (2)電化學池密封性能好,可通入反應氣體。

    (3)金剛石晶體光通量大。

    (4)獨特的電極,電解液信號采集調節(jié)技術。

    (5)可實現電化學紅外質譜三聯(lián)用。

    (6)金剛石晶體板和電化學池拆卸方便,可方便在手套箱中組裝電池。

    (7)提供現場技術服務。

    ?

    主要技術參數

    1.光譜范圍:250/525-4000 cm-1

    2.晶體種類:金剛石晶體

    3.電化學池:PEEK材質,兩電極體系,氣密性池體,可方便在手套箱中裝卸電池,設有進氣口和出氣口,可實現各類電池充放電過程中紅外光譜的采集。

    4.溫控電化學池,溫控范圍:RT-100℃,溫控精度0.1℃。

    5.電極與金剛石晶體距離調節(jié)系統(tǒng),帶刻度微調功能,重現性好,以實現觀測電解液溶劑化或電極表面物種變化。

    6.電化學池可實現電化學質譜儀與紅外三聯(lián)用,提供多聯(lián)用技術方案。

    7.反射次數:單次反射。

    8.反射類型:外反射。

    9.光路反射系統(tǒng)適配主流品牌紅外光譜儀,提供光譜儀適配底板,光路系統(tǒng)方便安放或取出光譜儀樣品倉。

    ?

    ?

    ?

    應用案例

    ?

    ?

    鋰離子電池? Chem. Mater.?2020, 32, 8, 3405–3413



    ?

    鋰離子電池 ACS Energy Lett. 2020, 5, 1022?1031



    ?

    鋅離子電池 Adv. Funct. Mater. 2020, 2003890



    ?

    鋰離子電池 ?Joule 2022, 6, 399–417

    ?

    部分客戶論文發(fā)表清單:

    1.?Jianping Xiao*, Bin Zhang*, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to bate.?Nat. Commun.?2020, 11, 3415

    2.?Lei Yan, Yonggang Wang*, et al. Chemically Self-Charging Aqueous Zinc-Organic Battery.?J. Am. Chem. Soc.?2021, 143, 15369-15377?

    3.?Bingliang Wang, Yongyao Xia*, et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reb.?Energy Environ. Sci.?2020, 13, 2200-2208

    4.?Yang Peng*, et al. Breaking Linear Scaling Relationship by Combal and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production.?Angew. Chem. Int. Ed.?2021, 60, 2508-2518?

    5.?Zhuo Yu, Yonggang Wang*, et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating.?Adv. Energy Mater.?2020, 10, 2000907

    6.?Xinwei Ding, Zhi Yang*, et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries?Adv. Funct. Mater.?2020, 30, 2003354?

    7.?Hong Guo*, Xueliang Sun*, et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Perbance Li Storage.?ACS Energy Lett.?2020, 5, 1022-1031

    8.?Bin Zhang* et al. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2?Electroreduction.?ACS Catal.?2019, 9, 10983-10989?

    9.?Suya Zhou, Zhi Yang*, et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries?ACS Nano.?2020, 14, 7538–7551

    10.?Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior.?Adv. Sci.?2020, 7, 2000196

    11.?Lei Wang*, Yonggang Wang, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-perbance lithium–air batteries.?Energy Storage Materials.?2020, 26, 593-603

    12.?Bin Zhang, et al. Unveiling in situ evolved In/In2O3? x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2?to bate.?Science Bulletin.?2020, 65, 1547-1554

    13.?Huani Li, Shubiao Xia*, Hong Guo*, et al. Red Phosphorus Confined in Hierarchical Hollow Surface-Modified Co9S8 for Enhanced Sodium Storage.?Sustainable Energy Fuels.?2020, 4, 2208-2219?

    14.?Guanglei Cui*, Liquan Chen, et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium bl batteries.?Chem. Mater.?2020, 32, 3405-3413?

    15.?Guanglei Cui*, et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its perbance with High Voltage LiCoO2?Chem. Commun.?2020, 56, 4998-5001?

    16.?Zhongbin Zhuang*, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells.?Nat. Commun.?2020, 11, 5651?

    17.?Tiancun Liu, Yong Wang*, et al. Organic supramolecular protective layer with rearranged and defensive Li deb for stable and dendrite-free lithium bl anode.?Energy Storage Materials.?2020, 32, 261–271

    18.?X. Yin, Y. Wang*, et al. Designing cobalt-based coordination polymers for high-perbance sodium and lithium storage: from controllable synthesis to mechanism detection.?Materials Today Energy.?2020, 17, 100478

    19.?Song Chen, Jintao Zhang*, et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Perbance Aqueous Zinc-Ion Battery.?Adv. Funct. Mater.?2020, 30, 2003890?

    20.?Yanrong Xue, Zhongbin Zhuang*, et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reb Electrocatalyst in Acid.?Adv. Funct. Mater.?2021, 31, 2101405

    21.?Hong Guo*, et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-perbance Li-S batteries.?Energy Storage Materials.?2021, 40, 139-149

    22.?Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.?SCIENCE CHINA Chemistry.?2021, 64, 1493–1497

    23.?Yang Peng*, et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production.?Adv. Mater.?2021, 33, 2101741

    24.?Yonggang Wang*, et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries.?Angew. Chem. Int. Ed.?2021, 60, 20826-20832?

    25.?Hongliang Jiang*, Chunzhong Li*, et al. Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2?Electroreduction.?J. Am. Chem. Soc. 2022, 144, 6613–6622

    26.?Yang Peng*, et al. Au-activated N motifs in non-coherent cupric porphyrin bl organic frameworks for promoting and stabilizing ethylene production.?Nat. Commun.?2022, 13, 63?

    27.?Jie Zeng*, et al. Copper-catalysed exclusive CO2?to pure bic acid conversion via single-atom alloying.?Nature Nanotechnology.?2021, 16, 1386-1393?

    28.?Min-Rui Gao*, et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2?Electroreduction.?J. Am. Chem. Soc.?2022, 144, 1, 259-269?

    29.?Chen Feng, Shiming Zhou*, Jie Zeng*, et al. Tuning the Electronic and Steric Interb at the Atomic Interface for Enhanced Oxygen Evolution.?J. Am. Chem. Soc.?2022, 144,21,9271-9279?

    30.?Rui Lin, Jianhui Wang, et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries.?Joule?2022, 6, 399–417?

    31.?Xiaogang Zhang*, et al. Successive Cationic and Anionic (De)-Intercalation/Incorporation into an Ion-Doped Radical Conducting Polymer.?Batteries & Supercaps?2019, 2, 979-984

    32.?Zhongju Wang, Yongzhu Fu*, et al. BiredoxIonic AnthraquinoneCoupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for LiOrganic Batteries.?Adv. Sci.?2022, 9, 2103632?

    33.?Jintao Zhang*, et al. Defect evolution of hierarchical SnO2?aggregatesfor boosting CO2?electrocatalytic reduction.?J. Mater. Chem. A?2021, 9, 14741-14751

    34.?Fei Ai, Yijun Lu*, et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures.?Nature Energy?2022, 7, 417–426?

    35.?Zhejun Li, Yijun Lu*. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes.?Nature Energy?2021, 6, 517–528

    36.?Shanshan Lu, Wei Zhou. et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution.?Chem.?2022, 8, 1415-1426.??

    37.?Tieliang Li, Yifu Yu, Bin Zhang*, et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst.?Angew. Chem. Int. Ed.?2022, e202204541?

    38.?Yanbo Li, Bin Zhang, Yifu Yu*, et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets.?ACS Energy Letters?2022, 7, 1187-1194?

    39.?Yanmei Huang, Yifu Yu, Bin Zhang*, et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide.?ACS Energy Letters?2022, 7, 284-291

    40.?Wenfu Xie, Hao Li, Min Wei*, et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2?Reduction.?Angew. Chem. Int. Ed.?2021, 60, 7382–7388

    41.?Rui Sui, Jiajing Pei, Zhongbin Zhuang*, et al. Engineering Ag?Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2?Electroreduction.?ACS Appl. Mater. Interfaces?2021, 13, 17736-17744?

    42.?Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang*, et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate.?ACS Catal.?2021, 11, 14032-14037

    43.?Bin Zhang*, et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts.?Science China Chemistry?2020, 63, 1469-1476

    44.?Jiangwei Shi, Bin Zhang*, et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.?Science China Chemistry?2021, 64, 1493-1497?

    45.?Jintao Zhang* et al. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2.?Angew. Chem.Int. Ed.?2022, 61, e202113918

    46.?Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction.?Angew. Chem.Int. Ed.?2022, 61, e202201166

    47.?Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution.?Chem.?2022, 8, 1415-1426

    48.?Sheng Dai*,?Minghui Zhua*,?Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction.?Applied Catalysis B: Environmental?2021, 298,

    49.?Nan Wang, Yonggang Wang*, et al. Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150 oC.?Angew. Chem. Int. Ed.?2020,59,14577-14583

    50.?Nannan Meng, Yifu Yu, Bin Zhang*, et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids.?Angew. Chem. Int. Ed.?2019, 58, 18908–18912

    ?

    ?

在線詢盤/留言
  • 免責聲明:以上所展示的信息由企業(yè)自行提供,內容的真實性、準確性和合法性由發(fā)布企業(yè)負責,本網對此不承擔任何保證責任。我們原則 上建議您選擇本網高級會員或VIP會員。
    企業(yè)信息
    上海零露儀器設備有限公司
    會員級別:
    ------------ 聯(lián)系方式 ------------
    聯(lián)系人:Arina(小姐)
    聯(lián)系電話:-
    聯(lián)系手機:18198047742
    傳真號碼:-
    企業(yè)郵箱:Arina555@163.com
    網址:18198047742.jdzj.com
    郵編:
    推薦供應
    0571-87774297