N4010A WLAN 系统测试操作指南

安捷伦科技应用技术工程师 于涛

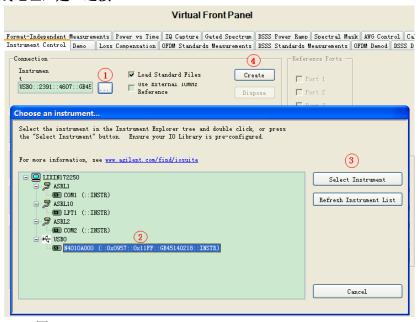
N4010A 是一款通用的多制式无线连接测试仪,通过加载不同的选件,可完成蓝牙,WLAN 和 ZigBee 系统设备的射频指标测试,帮助您在研发,集成,验证和制造环境中完成相应的工作。

N4010A 中集成了矢量信号发生器和宽带信号分析仪,方便易用,并且配备多种按技术规范开发的软件工具,可帮助工程师实现 802.11 a/b/g/n 器件和模块发射机和接收机的测量。

本文详细介绍了使用 N4010A 进行 WLAN 802.11 a/b/g/n 系统手动测试的步骤,供大家参考。

1. 建立连接

WLAN 802.11 a/b/g/n 的信号播放和信号分析软件均运行于外置电脑中,因此在开始测试前,先要建立电脑与 N4010A 之间的通信连接。


1.1 启动 WLAN 测量软件

在开始->所有程序中运行 N4010A WLAN 测量软件 Virtual Front Panel。

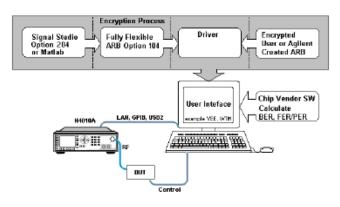
图一 N4010A WLAN 信号播放及分析软件启动示意图

1.2 选择总线地址,建立连接

图二 N4010A WLAN 信号播放及分析软件电脑连接建立示意图

(1) 点击仪器总线及地址选择按钮 , 弹出 "Choose an instrument..."对话框。N4010A 支持的总线有 GPIB 总线,LAN 总线,USB 总线,方便用户使用;

- (2) 在 "Choose an instrument..."对话框里选择总线及相应的地址;
- (3) 点击 "Select Instrument" 按钮:
- (4) 点击 "Create" 按钮。激活 "Load Standard Files" 选择框可在软件与仪器连接的过程 中将标准的 Segment 文件和相应的 Sequence 文件下载入仪表中;
- (5) 建立连接成功后,相应的界面如下图所示:

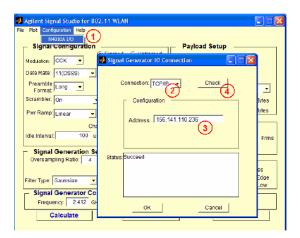


图三 连接建立成功示意图

2. 接收机测试

2.1 测试示意图

WLAN 802.11a,b,g Receiver Test

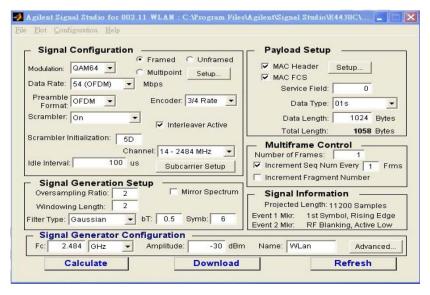


图四 接收机测试框图

如上图所示,在 WLAN 设备的接收机(比如说参考灵敏度测量项)测试过程中,首先要通过 WLAN 信号生成软件 Signal Studio 生成标准的或客户自定义的波形下载入 N4010A; 然后通过外置控制电脑(Control PC)分别控制 N4010A 发射波形、待测件接收波形,N4010A 和待测件之间的射频信号收发通过射频线缆或夹具完成; 最后在控制电脑内计算 BER/FER/PER 参数,进行待测件接收机性能的评估。

2.2 建立 Signal Studio 与仪器的连接

用于编辑测试波形文件的 Signal Studio 安装在 PC 机上,用于编辑测试波形文件,并将生成文件下载至 N4010A 中。下图所示为如何在 Signal studio 软件与 N4010A 之间建立连接。



图五 Signal Studio 与电脑连接建立示意图

- (1) 选择 Configuration->N4010A I/O;
- (2) 选择总线类型;
- (3) 输入总线地址;
- (4) 点击"Check",进行仪表连接的确认,如果软件与仪表正确连接,则会返回"Succeed" 状态,点击 OK,进入波形设置窗口。

2.3 配置并下载波形文件

N4010A Signal Studio 的界面如下图所示:

图六 Signal Studio 波形编辑界面

Signal Configuration

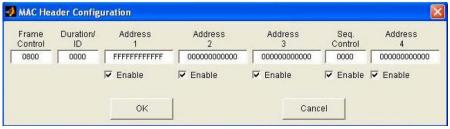
Channel: 按照 channel 编号选择需要测试的频点;

Preamble Format: OFDM 对应 802.11 a/g, DSSS 对应 802.11b, HT 对应 802.11n;

Data Rate: 选择需要测试的速率;

Modulation: 选择需要测试的调制方式;

Framed/Unframed: Framed 是以 burst 的方式突发, unframed 是连续发射。测试时应选


用 Framed;

Idle Interval: 设置 frame 之间的发射间隔,以 100 至 200us 为宜;

其它设置可以保持默认值。

Payload Setup

选择 Payload Setup 区域的 setup 键,可看到如下图所示界面:

图七 MAC 地址编辑窗口

Frame Control: 设为 0800 或根据用户需求自定义; Duration ID: 设为 0000 或根据用户需求自定义;

Address 1: 设为 FFFFFFFFFF 或根据用户需求自定义;

其它设置可以保持缺省值。

Signal Generation Setup

设置可以保持缺省值。

Multiframe Control

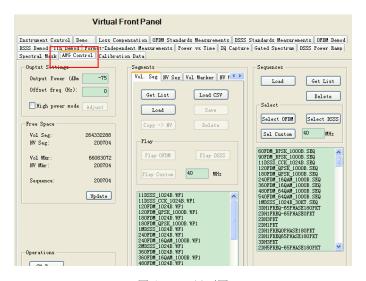
Number of frames:设置一个波形文件中包含的 frame 的数目,以1为宜。

Signal Generator Configuration

Fc: 应与 channel 设置一致;

Amplitude: 设置合适的发射功率;

Name: 给生产的波形文件命名,例如 OFDM 54M。


设置完成之后即可选择 Download 将生成的波形文件下载至 N4010A 中。

2.4 将波形文件保存至非易失存储器

N4010A 内部有内存和硬盘两块存储区域,分别存储 Volatile 波形和 Non-volatile 波形。 其中 Volatile 波形存储于内存,是掉电易失波形,即仪表关机后会丢失; Non-volatile 波形存储于硬盘中,是掉电非易失波形,即仪表关机后仍能保存在仪表内。

N4010A 进行播放的波形是从内存中读取的,即 Volatile 波形。为了防止波形丢失,我们需要将波形文件保存至非易失存储器即硬盘内。

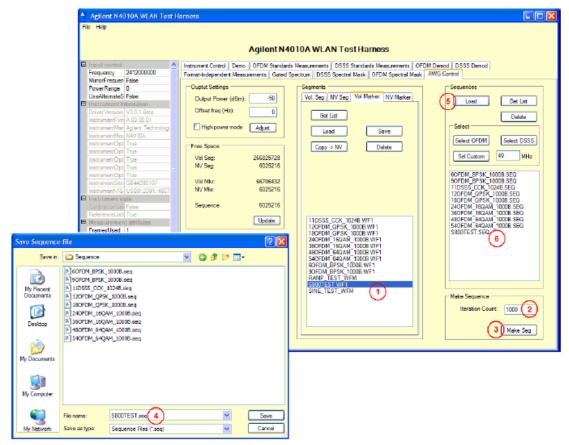
在 N4010A Virtual Front Panel 中选择 AWG Control 页,出现如下界面:

图八 AWG 界面图

依次执行如下操作:

图九 保存非易失文件示意图

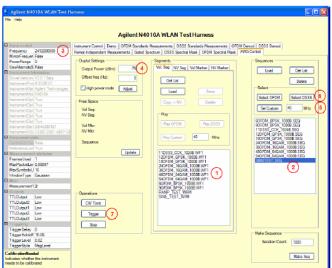
- (1) Get list,刷新波形列表;
- (2) 选中要被保存的波形;
- (3) 点击 Copy->NV,完成波形保存。


2.5 制作 sequence 文件

N4010A 的波形按照播放方式分为两类: Segment 和 Sequence。

其中 Segment 就是我们在 2.3 节中配置并下载入仪表的一个波形文件,而 Sequence 是由若干个 Segment 首尾相连组成的一个波形文件。两者的区别是 Segment 波形播放时,只要我们不手动停止,波形就会不停的播放,而 Sequence 波形播放时,在重复播放了一定的次数后,波形就不再播放了。

在实际的生产测试过程中,一般用的都是 Sequence 波形播放方式,播放的次数一般为 1000,即 1000 个 Segment 组成一个 Sequence 文件。


下面我们来描述如何制作 Sequence 文件。

图十 Sequence 文件制作示意图

- (1) 选中一个 Segment 文件;
- (2) 输入 Sequence 文件包含 Segment 文件的个数;
- (3) 点击 Make Seq;
- (4) 输入 Sequence 文件的文件名, 然后保存;
- (5) Load 第(4) 步里保存的 Sequence 文件;
- (6) 在 Sequence 文件列表里查看文件名。

2.6 播放 sequence 文件

图十一 Sequence 文件播放示意图

- (1) 在 Segment 文件列表中确保相对应于待播放的 Sequence 文件的 Segment 文件被正确加载;
- (2) 选中待播放的 Sequence 文件;
- (3) 设置正确的中心频点;
- (4) 设置正确的射频信号功率值;
- (5) 设置正确的采样速率(点击 Select OFDM 或 Select DSSS 会自动设置正确的采样速率 值):
- (6) 根据待播放的波形,选择合式的调制方式,OFDM 对应于 802.11a/g,DSSS 对应于 802.11b:
- (7) 点击 Trigger, 触发波形输出。

3. 发射机测试

3.1 测试示意图

R&D Integration Manufacturing 89601 89607 Driver Option 110 User Inteface Chip Vendor SW Example VEE, WTM DUT

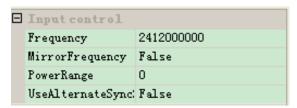
WLAN 802.11a,b,g Transmitter Test

图十二 发射机测试框图

Control

如上图所示,在 WLAN 设备的发射机(比如说发射功率,误差矢量幅度 EVM 等测量项)测试过程中,首先要通过待测件的驱动程序控制待测件发射信号,待测件输出的射频信号通过射频线缆或夹具输入至 N4010A;然后通过控制总线(LAN,GPIB,USB)将 N4010 采样后的数据送至安装于电脑中的信号分析软件 89601 / 89607 / Virtual Front Panel 中进行分析。

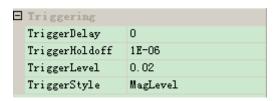
我们以 Virtual Front Panel WLAN 信号分析软件为例,说明如何进行 WLAN 系统发射机的测试。


3.2 建立 Virtual Front Panel 与仪器的连接

请参考第 1.2 节中的内容。

3.3 DSSS 802.11b 信号分析

3.3.1 测试设置


如下图所示,在进行射频信号分析前,必须进行正确的仪表设置:

图十三 N4010A Input control 设置界面

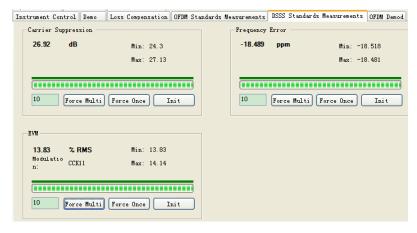
attributes
1
h 0.00097
l 16
FrontPanel
Gaussian

图十四 N4010A Measurement attributes 设置界面

图十五 N4010A Triggering 设置界面

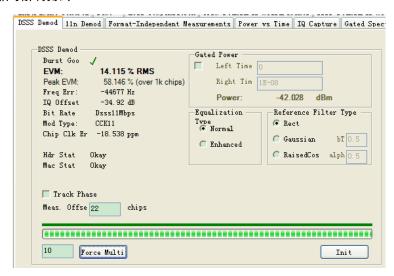
N4010A 带有 Autorange 功能,可以根据输入信号的特性,自动调节 Power Range, Trigger Level, Max Packet Length, Max Symbol Used 等参数,方便客户使用。

Autorange 的使用非常简单,主要分为三步:



图十六 Autorange 使用方法示意图

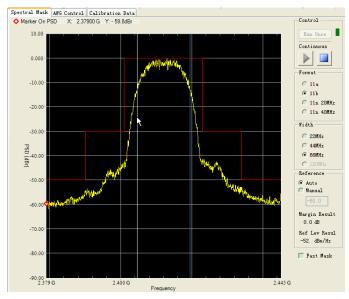
- (1) 根据输入信号的类型,点击 11 b, 11a/g, 11n/20MHz, 11n/40MHz 四个按钮中的一个;
- (2) N4010A 会根据输入信号的特性,自动计算设置参数值;
- (3) 点击 Set 按钮,激活自动设置参数值。


3.3.2 DSSS 信号 Carrier Suppression, Frequency Error, EVM 测试

图十七 DSSS 标准测量项界面

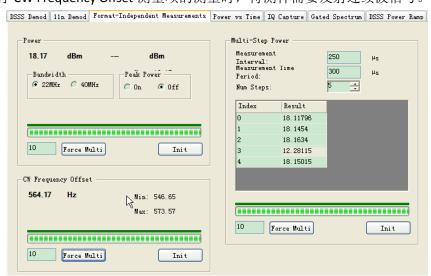
- (1) 选中 DSSS Standard Measurement 选择框;
- (2) 点击 Force Multi, Force once 或 Init 按钮进行测量,其中 Force Multi 是进行连续多次测量,测量在次数由左边的数字输入框决定(默认是 10),Force Once 是进行单次测量,Init 是初始化测量。

3.3.3 DSSS 信号解调测试


图十八 DSSS 解调测量项界面

3.3.4 DSSS 信号上升、下降时间测试

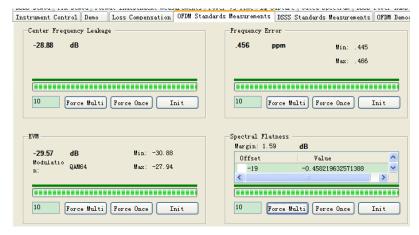
图十九 DSSS 信号上升、下降时间测量项界面


3.3.5 DSSS 信号频谱辐射模板测试

图二十 DSSS 信号频谱辐射模板测量项界面

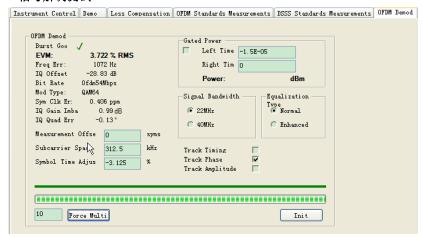
3.3.6 非标准测试

非标准测试是一些独立于特定调制方式(OFDM/DSSS)的测量项。 在进行 CW Frequency Offset 测量项的测量时,待测件需要发射连续波信号。

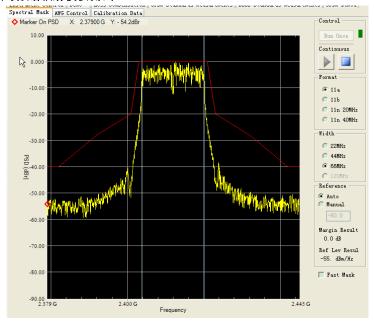

图二十一 非标准测量项界面

3.4 OFDM 802.11a/g 信号分析

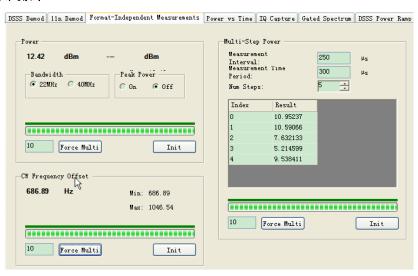
3.4.1 测试设置


与 DSSS 信号的设置类似,请参考第 3.3.1 节。

3.4.2 OFDM 信号 Center Frequency Leakage, Frequency Error, EVM, Spectral Flatness 测试


图二十二 OFDM 标准测量项界面

3.4.3 OFDM 信号解调测试


图二十三 OFDM 解调测量项界面

3.4.4 OFDM 信号频谱辐射模板测试

图二十四 OFDM 频谱辐射模板测量项界面

3.4.5 非标准测试

图二十五 非标准测量项界面